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TIME-AVERAGED SHADOW-MOIRE METHOD

FOR STUDYING VIBRATIONS

by

Y. Y. Hung, C. Y. Liang, J. D. Hovanesian and A. J. Durelli

ABSTRACT

A time-averaged shadow-moiré method is presented which permits the
determination of the amplitude distribution of the deflection of a plate
in steady state vibration. No stroboscope is required and the recording

is done statically. The method is less sensitive than holographic

methods and is therefore suitable for studying relatively large amplitudes.
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Introduction

(1=3)

Besides its uses in evaluating surface depth contours and in
determining surface deformations,(a-s) the shadow moiré method was also used

to study nodal patterns in vibrating plates.(g) However, to study amplitude

(10)

distribution, a stroboscopic method was required. This paper presents a

time-averaged shadow moiré method whereby the distribution of the amplitude
of the plate deflection can be obtained without stroboscopic equipment. In
the method, the shadow moiré contour fringes of an object in steady state
vibration is photographed with an exposure time equal to one or several
vibrational periods. The processed photograph produces a time-averaged fringe
pattern depicting the vibrational amplitudes.

The time-averaged effect utilized in the present paper was first applied
(11)

by Powell and Stetson to vibration studies using holography. The hologram

they obtained recorded the position of a steady state vibrating object with a
long exposure time compared to the vibrational period. They showed that in
the reconstruction of this hologram a time-averaged interference fringe
pattern was produced which measured the vibrational amplitudes. The fringe
pattern could be represented mathematically by a zero-order Bessel function.
The time-averaged effect was later applied to study vibrations using projected

AR However, the two techniques are on opposite extremes

gratings methods.
in the range of sensitivities. While the time-averaged holography is extremely
sensitive being able to measure vibrational amplitudes of the order of wave-
lengths of light, the projected gratings methods are rather insensitive.
Therefore, there is a large gap in the sensitivity range between the two

techniques. The present method, though still unable to bridge the entire gap,

has extended the sensitivity of the projected gratings methods.

o,




Description of the Metliod

The method uses a standard shadow moiré arrangement as shown in Fig. 1.
A master grating with lines running parallel to the y-axis is located in front
of and close to the object to be studied. A collimated beam of light illum-
inates the grating at an angle 6 to the y,z-plane, and a distant camera
views the grating normally.

I1f the object surface to be studied is flat, it is carefully positioned
so that the stationary moiré contour fringes are null. Then with the object
being excited to vibrate steadily, a time~dependent moiré fringe pattern due
to the vibrational displacements is observed. If the time-varying fringe
pattern is recorded by the camera with an exposure time of one or several
vibrational periods, the processed photograph will yield a time-averaged
fringe pattern which is related to the vibrational amplitudes by a zero-order
Bessel function.

For objects which are not flat, it is not possible to null the stationary
contour fringes. In this case, it is advisable to use a rather demse initial
contour fringe pattern deliberately introduced by slightly tilting the object
about an axis perpendicular to the viewing direction. This initial fringe
pattern is then used as a carrier which is modulated by the vibrational
amplitudes. The time-averaged fringes formed by the modulated carrier also
depict the amplitude distribution of the vibration.

If the vibrational frequency is high enough (20 Hz or higher), the
image retaining nature of the eye can do the time averaging. Hence, real

time averaged moiré fringes may be observed by the naked eye.



Theory of the Method

Assume that the intensity transmittance of the master grating is

sinusoidal and represented by:

Tlx,y) = 1 + ain 2% X

where p 1is the grating pitch. The obliquely illuminating beam casts a

shadow of the grating onto the object surface. Under the condition that the

grating is coarse enough for diffraction effects to be neglected, it can be

shown that the intensity distribution Is(x,y) of the shadow is:(l)

Is(x,y) =k [1 + sin 2% (x = 2z tan 9)]

where k 1is a constant depending on the scattering attenuation of the

object surface and =z 1is the surface elevation.

Since the camera views the shadow through the master ruling, the

intensity of the image Io(x,y) detected is the product of the shadow

intensity and the grating transmittance and is given by:

I, (xy) = T .(%y) ¢ T(x,y)

Expansion of the above equation yields

2
Io(x,y) =k {1 + sin —%-x + sin Z-E'(x z tanf)

- % cos E% (2 x - z tanf) + = cos (Z% z tane)}

-



All the terms on the right-hand side of the above equation are of high

spatial frequency which will average to zero, except the following:

A Lo
Io(x,y) =k {l + 5 cos 5 z tane} (5)

This equation predicts the formation of moiré fringes depicting 2z, the
contour of the surface.
With the surface undergoing steady state sinusoidal oscillation, 2z is

given by:
S + A(x,y).cos (wt + ¢) (6)

where z, is the stationary contour of the object surface; A(x,y) is the
amplitude distribution of the vibrating surface; w is the circular frequency,
and ¢ represents the arbitrary initial phase. Thus, 2z in Eq. (5) is
time-dependent and Io(x,y) should be replaced by Io(x,y,t). 1f the photo-
graphic film in the camera is exposed to Io(x,y,t) the exposure on the film

is an integration of Io(x,y,t) over the exposure time which can be adjusted

to an integral multiple of the vibrational periods. The integrated intensity

is Ii(x,y) given by:

nT
L (%,y) =[ Io(x,y,t) dt (7)

where nT 1is the exposure time; n is an integer and T the vibrational

period.




Techniques %
1 5 For flat objects:

For a flat object, it is possible to null the stationary contour

fringes by positioning the object so that z = constant (i.e., the

flat surface is parallel to the plane of the grating). Then Eq. (6)
can be integrated to yield:
3
1 2m 27
I (x,y) =nTk {145 - cong sad) i (=5 tand Alx,y)} (8)

The above equation indicates a fringe pattern depicted by a zero-order
Bessel function containing A(x,y), the vibrational amplitude distribution,

in its argument. Dark fringes occur when the Bessel function attains its

minimum, i.e.

2" tang - Ax,y) = B &

P 3
where Bj is the argument of the jth minimum value of Jo. By rewriting
Eq. (9) as

il 0
Alx,y) =5 G A} (10)
Bj

and defining o N as the fringe order, then the amplitude distribution

A(x,y) can be determined by the following equation

A(x,y) = NE=) (11)

where N = 0.610, 1.62, 2.62, 3.62, 4.62, . . . .




M e

2, For arbitrarily curved surfaces

For curved surface it is not possible to null the stationary contours.
In this case, relatively high density fringes are deliberately
introduced by slightly rotating (say a) the object about x-axis.

z in Eq. (6) becomes
z = (z +*ay) * A(x,y) * cos (wt + ¢) (12)

Equation (9) is then substituted into Eq. (7). Integration of the resulting

equation yields

I (x,y) = 1+ 3 cos 2—2— (z, + ay) = I, [3% tan8-A(x,y) ] (13)
Equation (13) is an expression where a high frequency term is amplitude
modulated by JO[g% tan6°A(x,y)]. In this case the nulling of the high
frequency term (carrier) is identified as moiré fringes which occur when

the Bessel function is equal to zero, i.e., the argument is equal to the

roots of the function. It can be shown, by following a similar analysis as

in the last section, that the amplitude distribution A(x,y) can be deter-

B,
mined by Eq. (10). For this case, N = —L where Bj is the jth root of Jo,

27
and takes the values of 0.383, 0.879, 1.38, 1.88, 2.38, . .
While the first technique is only applicable to flat objects, the fringe
modulation technique can be used for studying objects of both flat and
curved surfaces. Our experience shows that fringes of better visibility

were obtained using the first technique. However, the fringe modulation

technique is better suited for studying nodal patterns.

oA i o
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Similar results will be obtained if the intensity transmittance of the
grating is a square function with the advantage that a better fringe visibility

can be achieved.

Exgeriments

A circular rubber membrane of 10 cm diameter clamped along its boundary
was selected for demonstration. It was excited into vibration from behind by
a loud speaker driven by a wave generator. A one-way grating of 20 lines
per centimeter was used. The light source was a projector located at a
great distance from the object in a direction making an angle 6 = 60°
with the normal to the plate.

The grating was carefully positioned in respect to the plate to avoid
any initial interference. The plate was then excited at its natural
frequencies of 100 and 185 Hz. The fringe patterns obtained depicting the
amplitude distributions of the vibrational modes are shown in Fig. 2.

To demonstrate the fringe carrier technique, the membrane was slightly
tilted to produce the initial fringe carrier shown in Fig. 3(A). The
time-averaged moiré fringes formed by the fringe carrier when the membrane
was excited to vibrate at 100 Hz and 185 Hz are shown in Fig. 3(B) and

Fig. 3(C), respectively.

Conclusion

It has been shown that time-averaged shadow moiré fringes are formed when

an object is undergoing steady state oscillation. The fringes are loci of




deflection amplitude interpreted by a zeroth order Bessel function. Owing

to the fact that the value of the Bessel function decreases as the value of

ST

the argument increases, the fringe visibility drops with the increasing
amplitude. This provides a means of identifying nodal areas as well as the
fringe orders.

In the projected grating method, it is necessary for the imaging system :
to resolve the grating projected on the object surface. Therefore, the
limit to the fineness of the grating that can be projected and recorded
bounds the sensitivity of the method. The present method requires only
the moiré fringes to be resolved, thus allowing gratings of higher frequency
to be used. Hence, it extends the sensitivity range of the projected grating

method.
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Ficure 2 FRINGE PATTERN DEPICTING VIBRATIONAL AMPLITUDE OF
A RuBBER MEMBRANE




(B) (c) 0-12

Ficure 3(A) INITIAL FRINGE CARRIER OF THE CIRCULAR., CLAMPED

MEMBRANE
(B) MoIRE FRINGE PATTERN DEPICTING VIBRATIONAL

AvpLITUDE AT 100 Hz
(c) Moiré FRINGE PATTERN DePIcTING VIBRATIONAL

AMPLITUDE AT 185 Hz
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